itertools
A simple class to write / read data between hdf5 <=> dataframe
Count 功能详解
count(start=0,step=1) 函数有两个参数,其中 step 是默认参数,可选的,默认值为 1。 该函数返回一个新的迭代器,从 start 开始,返回以 step 为步长的均匀间隔的值。
import itertools
nums = itertools.count()
for i in nums:
if i > 4:
break
print(i)
0
1
2
3
4nums = itertools.count(10, 2)
for i in nums:
if i>14:
break
print(i)Repeat 功能详解
repeat(object, times) 该函数创建一个迭代器,不断的重复 object,当然如果指定 times 的话,则只会重复 times 次
Chain()
chain()可以把一组迭代对象串联起来,形成一个更大的迭代器:
groupby()
groupby()把迭代器中相邻的重复元素挑出来放在一起:
我们可以看到,该函数根据我们自定义的排序函数 sortBy 将列表中的元素进行了分组操作,只是我们发现最后一个怎么多了一个 A 的分组呢,这就是我们上面说所得「当 key 函数的返回值改变时,迭代器就会生成一个新的分组」。所以,我们需要事先对列表用 sortBy 函数排一下序。
compress 功能详解
compress(data, selectors) 该函数功能很简单,就是根据 selectors 中的值判断是否保留 data 中对应位置的值。
filterfalse 功能详解
filterfalse(predicate, iterable) 创建一个迭代器,返回 iterable 中 predicate 为 false 的元素。
islice 功能详解
islice(iterable, start, stop[, step]) 对 iterable 进行切片操作。从 start 开始到 stop 截止,同时支持以步长为 step 的跳跃。
dropwhile 功能详解
dropwhile(predicate, iterable) 创建一个迭代器,从 predicate 首次为 false 时开始迭代元素。
takewhile 功能详解
takewhile(predicate, iterable) 创建一个迭代器,遇到 predicate 为 false 则停止迭代元素。与 dropwhile 完全相反。
permutations 功能详解
permutations(iterable, r=None) 返回 iterable 中长度为 r 的所有排列。默认值 r 为 iterable 的长度。即使元素的值相同,不同位置的元素也被认为是不同的。
combinations 功能详解
combinations(iterable, r=None) 返回 iterable 中长度为 r 的有序排列。默认值 r 为 iterable 的长度。 与 permutations 操作不同的是该函数严格按照 iterable 中元素的顺序进行排列。
combinations_with_replacement
combinations_with_replacement(iterable, r=None) 返回 iterable 中长度为 r 的有序排列。默认值 r 为 iterable 的长度。 与 combinations 操作不同的是该函数允许每个元素重复出现。
Last updated
Was this helpful?
