Datetime Index
Read data
import pandas as pd
df = pd.read_csv("apple_stock_price.csv",parse_dates=["Date"], index_col="Date")
df.head(2)
Out[15]:
Open High Low Close Adj Close Volume
Date
2018-07-23 190.679993 191.960007 189.559998 191.610001 188.737030 15989400
2018-07-24 192.449997 193.660004 192.050003 193.000000 190.106216 18697900
What is DatetimeIndex? Benefits of it
Partial Date Index: Select Specific Months Data
df["2019-07"]
Out[21]:
Open High Low Close Adj Close Volume
Date
2019-07-01 203.169998 204.490005 200.649994 201.550003 201.550003 27316700
2019-07-02 201.410004 203.130005 201.360001 202.729996 202.729996 16935200
2019-07-03 203.279999 204.440002 202.690002 204.410004 204.410004 11362000
2019-07-05 203.350006 205.080002 202.899994 204.229996 204.229996 17265500
2019-07-08 200.809998 201.399994 198.410004 200.020004 200.020004 25338600
2019-07-09 199.199997 201.509995 198.809998 201.240005 201.240005 20578000
2019-07-10 201.850006 203.729996 201.559998 203.229996 203.229996 17897100
2019-07-11 203.309998 204.389999 201.710007 201.750000 201.750000 20191800
2019-07-12 202.449997 204.000000 202.199997 203.300003 203.300003 17595200
2019-07-15 204.089996 205.869995 204.000000 205.210007 205.210007 16947400
2019-07-16 204.589996 206.110001 203.500000 204.500000 204.500000 16866800
2019-07-17 204.050003 205.089996 203.270004 203.350006 203.350006 14107500
2019-07-18 204.000000 205.880005 203.699997 205.660004 205.660004 18582200
2019-07-19 205.789993 206.500000 202.360001 202.589996 202.589996 20929300
2019-07-22 203.649994 207.229996 203.610001 207.220001 207.220001 22241300
2019-07-23 208.460007 208.789993 207.440002 208.126907 208.126907 5728710
2.Average price of apple's stock in June, 2019
df['2019-06'].Close.mean()
Out[26]:
192.96900015
df['2019'].head(2)
Out[27]:
Open High Low Close Adj Close Volume
Date
2019-01-02 154.889999 158.850006 154.229996 157.919998 156.642365 37039700
2019-01-03 143.979996 145.720001 142.000000 142.190002 141.039642 91312200
Last updated